Bone Morphogenic Protein and Mesenchymal Stem Cells to Regenerate Bone in Calvarial Defects: A Systematic Review

J Clin Med. 2023 Jun 15;12(12):4064. doi: 10.3390/jcm12124064.

Abstract

Background: The use of bone morphogenic protein and mesenchymal stem cells has shown promise in promoting bone regeneration in calvarial defects. However, a systematic review of the available literature is needed to evaluate the efficacy of this approach.

Methods: We comprehensively searched electronic databases using MeSH terms related to skull defects, bone marrow mesenchymal stem cells, and bone morphogenic proteins. Eligible studies included animal studies that used BMP therapy and mesenchymal stem cells to promote bone regeneration in calvarial defects. Reviews, conference articles, book chapters, and non-English language studies were excluded. Two independent investigators conducted the search and data extraction.

Results: Twenty-three studies published between 2010 and 2022 met our inclusion criteria after a full-text review of the forty-five records found in the search. Eight of the 23 studies used mice as models, while 15 used rats. The most common mesenchymal stem cell was bone marrow-derived, followed by adipose-derived. BMP-2 was the most popular. Stem cells were embedded in Scaffold (13), Transduction (7), and Transfection (3), and they were delivered BMP to cells. Each treatment used 2 × 104-1 × 107 mesenchymal stem cells, averaging 2.26 × 106. Most BMP-transduced MSC studies used lentivirus.

Conclusions: This systematic review examined BMP and MSC synergy in biomaterial scaffolds or alone. BMP therapy and mesenchymal stem cells in calvarial defects, alone, or with a scaffold regenerated bone. This method treats skull defects in clinical trials. The best scaffold material, therapeutic dosage, administration method, and long-term side effects need further study.

Keywords: animal; biocompatible materials; craniotomy; models; neurosurgical procedures; plastic; reconstructive surgical procedures; stem cells; surgery; tissue engineering.

Publication types

  • Review

Grants and funding

This research received no external funding.