Effects of therapeutic ultrasound on the endothelial function of patients with type 2 diabetes mellitus

Braz J Med Biol Res. 2023 Jun 26:56:e12576. doi: 10.1590/1414-431X2023e12576. eCollection 2023.

Abstract

Type 2 diabetes mellitus (T2DM) is characterized by endothelial dysfunction that causes micro- and macrovascular complications. Low intensity therapeutic ultrasound (LITUS) may improve endothelial function, but its effects have not been investigated in these patients. The aim of our study was to compare the effects of pulsed (PUT) and continuous (CUT) waveforms of LITUS on the endothelium-dependent vasodilation of T2DM patients. The present randomized crossover trial had a sample of twenty-three patients (7 men) diagnosed with T2DM, 55.6 (±9.1) years old, with a body mass index of 28.6 (±3.3) kg/m2. All patients were randomized and submitted to different waveforms (Placebo, CUT, and PUT) of LITUS and the arterial endothelial function was evaluated. The LITUS of 1 MHz was applied in pulsed (PUT: 20% duty cycle, 0.08 W/cm2 SATA), continuous (CUT: 0.4 W/cm2 SPTA), and Placebo (equipment off) types of waves during 5 min on the brachial artery. Endothelial function was evaluated using the flow-mediated dilation (FMD) technique. PUT (mean difference 2.08%, 95% confidence interval 0.65 to 3.51) and CUT (mean difference 2.32%, 95% confidence interval 0.89 to 3.74) increased the %FMD compared to Placebo. In the effect size analysis, PUT (d=0.65) and CUT (d=0.65) waveforms presented moderate effects in the %FMD compared to Placebo. The vasodilator effect was similar in the different types of waves. Pulsed and continuous waveforms of LITUS of 1 MHz improved the arterial endothelial function in T2DM patients.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Brachial Artery / diagnostic imaging
  • Diabetes Mellitus, Type 2*
  • Endothelium, Vascular
  • Humans
  • Male
  • Ultrasonic Therapy* / methods
  • Vasodilation
  • Vasodilator Agents / pharmacology
  • Vasodilator Agents / therapeutic use

Substances

  • Vasodilator Agents