Objective: Anti-glutamic acid decarboxylase 65 (anti-GAD65)-associated neurological disorders include two major phenotypes, namely Stiff person syndrome (SPS) and cerebellar ataxia (CA). Considering the potential for better outcomes with prompt immunotherapy, early detection of CA is crucial. Hence, a non-invasive imaging biomarker to detect CA with high specificity is desired. Herein, we evaluated brain 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) PET in detecting CA based on cerebellar uptake using receiver operating characteristic (ROC) analysis and five-fold cross-validation.
Methods: This study was based on STARD 2015 guidelines: thirty patients with anti-GAD65-associated neurological disorders, 11 of whom with CA were studied. Five test sets were created after patients were randomly sorted and divided into 5 equal folds. Each iteration included 24 patients for ROC analysis and 6 patients reserved for testing. The Z scores of left cerebellum, vermis, right cerebellum, and the average of the three regions were used in ROC analysis to determine areas with significant area under the curve (AUC). The cut-off values with high specificity were determined among the 24 patients in each iteration and tested against the reserved 6 patients.
Results: Left cerebellum and average of the three regions showed significant AUC above 0.5 in all iterations with left cerebellum being the highest AUC in 4 iterations. Testing the cut-off values of the left cerebellum against the reserved 6 patients in each iteration showed 100% specificity with sensitivities ranging from 0 to 75%.
Conclusions: Cerebellar 18F-FDG PET uptake can differentiate CA phenotypes from patients with SPS with high specificity.
Keywords: 2-Deoxy-2-[18F]fluoro-D-glucose; Cerebellar ataxia; Fluorodeoxyglucose; GAD65; Glutamic acid decarboxylase 65; Positron emission tomography; Stiff person syndrome.
© 2023. The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine.