The pathological role of C-X-C chemokine receptor type 4 (CXCR4) in colorectal cancer (CRC) progression; special focus on molecular mechanisms and possible therapeutics

Pathol Res Pract. 2023 Aug:248:154616. doi: 10.1016/j.prp.2023.154616. Epub 2023 Jun 13.

Abstract

Colorectal cancer (CRC) is comprised of transformed cells and non-malignant cells including cancer-associated fibroblasts (CAF), endothelial vasculature cells, and tumor-infiltrating cells. These nonmalignant cells, as well as soluble factors (e.g., cytokines), and the extracellular matrix (ECM), form the tumor microenvironment (TME). In general, the cancer cells and their surrounding TME can crosstalk by direct cell-to-cell contact and via soluble factors, such as cytokines (e.g., chemokines). TME not only promotes cancer progression through growth-promoting cytokines but also provides resistance to chemotherapy. Understanding the mechanisms of tumor growth and progression and the roles of chemokines in CRC will likely suggest new therapeutic targets. In this line, a plethora of reports has evidenced the critical role of chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine ligand 12 (CXCL12 or SDF-1) axis in CRC pathogenesis. In the current review, we take a glimpse into the role of the CXCR4/CXCL12 axis in CRC growth, metastasis, angiogenesis, drug resistance, and immune escape. Also, a summary of recent reports concerning targeting CXCR4/CXCL12 axis for CRC management and therapy has been delivered.

Keywords: CXCL12 or SDF-1; CXCR4; Colorectal cancer (CRC); Growth; Metastasis.

Publication types

  • Review