RV6Sn6(R= Y and lanthanides) with two-dimensional vanadium-kagome surface states is an ideal platform to investigate kagome physics and manipulate the kagome features to realize novel phenomena. Utilizing the micron-scale spatially resolved angle-resolved photoemission spectroscopy and first-principles calculations, we report a systematical study of the electronic structures ofRV6Sn6(R= Gd, Tb, and Lu) on the two cleaved surfaces, i.e. the V- andRSn1-terminated (001) surfaces. The calculated bands without any renormalization match well with the main ARPES dispersive features, indicating the weak electronic correlation in this system. We observe 'W'-like kagome surface states around the Brillouin zone corners showingR-element-dependent intensities, which is probably due to various coupling strengths between V andRSn1layers. Our finding suggests an avenue for tuning electronic states by interlayer coupling based on two-dimensional kagome lattices.
Keywords: ARPES; RV6Sn6; electronic structure; first-principles calculations; kagome surface state.
© 2023 IOP Publishing Ltd.