[Analysis and prediction of thyroid cancer morbidity and mortality trends in China]

Zhonghua Liu Xing Bing Xue Za Zhi. 2023 Jun 10;44(6):917-923. doi: 10.3760/cma.j.cn112338-20221010-00869.
[Article in Chinese]

Abstract

Objective: To analyze the morbidity and mortality trends of thyroid cancer in China from 1990 to 2019, explore the causes of the trends, and predict morbidity and mortality in the future. Methods: The morbidity and mortality data of thyroid cancer in China from 1990 to 2019 were collected from the 2019 Global Burden of Disease database. The Joinpoint regression model was used to describe the change trends. Based on the morbidity and mortality data from 2012 to 2019, a grey model GM (1,1) was constructed to predict the trends in the next ten years. The model was tested by the posterior error method and residual test method. Results: In all populations, men and women, the AAPC values of the crude morbidity rates were 4.15% (95%CI: 3.86%-4.44%, P<0.001), 5.98% (95%CI: 5.65%-6.31%, P<0.001) and 3.23% (95%CI: 2.94%-3.53%, P<0.001) respectively, the AAPC values of age-standardized morbidity rates were 2.47% (95%CI: 2.12%-2.83%, P<0.001), 3.98% (95%CI: 3.68%-4.29%, P<0.001), 1.65% (95%CI: 1.38%-1.93%, P<0.001), the AAPC values of crude mortality rates were 2.09% (95%CI: 1.92%-2.25%, P<0.001), 3.68% (95%CI: 3.45%-3.90%, P<0.001), 0.60% (95%CI: 0.50%-0.71%, P<0.001). The age-standardized mortality rates in men showed a fluctuating trend of first decrease (1990-1994), then increase (1994-2012), and then decrease (2012-2019) (AAPC=1.35%, 95%CI: 1.16%-1.53%, P<0.001). The age-standardized mortality rate in women continuously decreased (AAPC=-1.70%, 95%CI: -1.82%- -1.58%, P<0.001). The GM (1,1) models can be used for medium and long-term predictions. The results of the residual test show that the average relative error values of all models are less than 10.00%, the prediction accuracy values are more than 80.00%, and the prediction effects are good. The results of the posterior error method show that all the prediction results are good except the qualified prediction of the age-standardized morbidity rate in men. In 2029, the crude morbidity rates would increase to 3.57/100 000, 2.78/100 000, and 4.40/100 000, respectively, and the age-standardized incidence rates would increase to 2.38/100 000, 1.89/100 000, and 2.88/100 000, respectively, the crude mortality rates would increase to 0.57/100 000, 0.62/100 000 and 0.53/100 000, and the age-standardized mortality rates would decrease to 0.33/100 000, 0.42/100 000 and 0.27/100 000 in all population, men and women in China. Conclusions: The overall, gender- specific age-standardized mortality rates showed downward trends in the last decade or so, and the prediction results showed that it might further decline. However, the crude morbidity rates, age-standardized and crude mortality rates have been on the rise, and the population aging is becoming increasingly serious in China, which requires close attention and targeted prevention and control measures.

目的: 分析1990-2019年中国甲状腺癌发病和死亡趋势,探讨趋势变化原因,并对未来发病和死亡情况进行预测。 方法: 收集2019全球疾病负担数据库中1990-2019年中国甲状腺癌发病和死亡数据。利用Joinpoint连接点回归模型描述变化趋势。基于2012-2019年发病和死亡数据,构建灰色模型GM(1,1)预测未来10年情况,根据后验误差法、残差检验法对模型进行检验。 结果: 全国、男性、女性粗发病率的平均年度变化百分比(AAPC)值分别为4.15%(95%CI:3.86%~4.44%,P<0.001)、5.98%(95%CI:5.65%~6.31%,P<0.001)、3.23%(95%CI:2.94%~3.53%,P<0.001),年龄标化发病率AAPC值分别为2.47%(95%CI:2.12%~2.83%,P<0.001)、3.98%(95%CI:3.68%~4.29%,P<0.001)、1.65%(95%CI:1.38%~1.93%,P<0.001),粗死亡率AAPC值分别为2.09%(95%CI:1.92%~2.25%,P<0.001)、3.68%(95%CI:3.45%~3.90%,P<0.001)、0.60%(95%CI:0.50%~0.71%,P<0.001)。男性年龄标化死亡率呈先下降(1990-1994年)后上升(1994-2012年)再下降(2012-2019年)的波动趋势(AAPC=1.35%,95%CI:1.16%~1.53%,P<0.001)。女性年龄标化死亡率呈持续下降趋势(AAPC=-1.70%,95%CI:-1.82%~-1.58%,P<0.001)。建立的GM(1,1)模型均能够进行中长期预测,残差检验法结果显示,所有模型平均相对误差≤10.00%且预测精度>80.00%,预测效果优;后验误差法结果显示,除男性年龄标化发病率为合格外,其余均为好。预测2029年全国、男性、女性的粗发病率为3.57/10万、2.78/10万、4.40/10万,年龄标化发病率为2.38/10万、1.89/10万、2.88/10万,粗死亡率为0.57/10万、0.62/10万、0.53/10万,年龄标化死亡率为0.33/10万、0.42/10万、0.27/10万。 结论: 全国、男性、女性年龄标化死亡率近10年呈下降趋势,预测结果显示未来可能进一步下降,但粗发病率、年龄标化发病率和粗死亡率一直处于上升状态,且中国人口老龄化程度日益加剧,需要密切关注并实施有针对性的防控措施。.

Publication types

  • English Abstract

MeSH terms

  • Aging
  • China / epidemiology
  • Female
  • Humans
  • Male
  • Morbidity
  • Thyroid Neoplasms* / epidemiology