Carboligation of 5-(hydroxymethyl)furfural via whole-cell catalysis to form C12 furan derivatives and their use for hydrazone formation

Microb Cell Fact. 2023 Jun 29;22(1):120. doi: 10.1186/s12934-023-02130-1.

Abstract

Background: Biobased 5-(hydroxymethyl)furfural (5-HMF) is an important platform that offers numerous possibilities for upgrading to a range of chemical, material and fuel products. One reaction of special interest is the carboligation of 5-HMF into C12 compounds, including 5,5'-bis(hydroxymethyl)furoin (DHMF) and its subsequent oxidation to 5,5'-bis(hydroxymethyl)furil (BHMF), due to their potential applications as building blocks for polymers and hydrocarbon fuels.

Objectives: This study was aimed at evaluating the use of whole cells of Escherichia coli carrying recombinant Pseudomonas fluorescens benzaldehyde lyase as biocatalysts for 5-HMF carboligation, recovery of the C12 derivatives DHMF and BHMF, and testing the reactivity of the carbonyl groups for hydrazone formation for potential use as cross-linking agents in surface coatings. The effects of different parameters on the reaction were investigated to find the conditions for achieving high product yield and productivity.

Results: The reaction with 5 g/L 5-HMF using 2 gCDW/L recombinant cells in 10% dimethyl carbonate, pH 8.0 at 30 °C resulted in DHMF yield of 81.7% (0.41 mol/mol) at 1 h, and BHMF yield of 96.7% (0.49 mol/mol) at 72 h reaction time. Fed-batch biotransformation generated a maximum DHMF concentration of 53.0 g/L (or 26.5 g DHMF/g cell catalyst) with productivity of 10.6 g/L.h, after five feeds of 20 g/L 5-HMF. Both DHMF and BHMF reacted with adipic acid dihydrazide to form hydrazone that was confirmed by Fourier-transform infrared spectroscopy and 1H NMR.

Conclusion: The study demonstrates the potential application of recombinant E. coli cells for cost-effective production of commercially relevant products.

Keywords: 5,5’-bis(hydroxymethyl)furil (BHMF); 5,5’-bis(hydroxymethyl)furoin (DHMF); 5-(hydroxymethyl)furfural; Benzaldehyde lyase; Hydrazone; Whole-cell biocatalyst.

MeSH terms

  • Catalysis
  • Escherichia coli* / genetics
  • Furans*
  • Hydrazones

Substances

  • 5-hydroxymethylfurfural
  • Furans
  • Hydrazones