Amorphous Co-Mo-S nanospheres fabricated via room-temperature vulcanization for asymmetric supercapacitors

J Colloid Interface Sci. 2023 Nov:649:880-889. doi: 10.1016/j.jcis.2023.06.163. Epub 2023 Jun 25.

Abstract

Ternary metal sulfides employed in supercapacitors exhibit better electrochemical performances than their counterpart oxides due to their superior conductivity. However, the insertion/extraction of electrolyte ions can lead to a significant volume change in electrode materials, which can result in poor cycling stability. Herein, novel amorphous Co-Mo-S nanospheres were fabricated through a facile room-temperature vulcanization method. It involves the conversion of crystalline CoMoO4 by reacting it with Na2S at room temperature. In addition to the conversion of the crystalline state into an amorphous structure with more grain boundaries, which is beneficial for the transport of electron/ion and can accommodate the volume change generated by the insertion/extraction of electrolyte ions, the production of more pores led to an increased specific surface area. The electrochemical results indicate that the as-prepared amorphous Co-Mo-S nanospheres had a specific capacitance of up to 2049.7F/g@1 A/g together with good rate capability. The amorphous Co-Mo-S nanospheres can be used as the cathode of supercapacitors and assembled with an activated carbon anode into an asymmetric supercapacitor possessing a satisfactory energy density of 47.6 Wh kg-1@1012.9 W kg-1. One of the prominent features exhibited by this asymmetric device is its remarkable cyclic stability, with a capacitance retention of 107% after 10,000 cycles.

Keywords: Amorphous; Asymmetric supercapacitors; Co-Mo-S nanospheres; Cycling stability; Room-temperature vulcanization.