Molecular mimicry and autoimmunity in the time of COVID-19

J Autoimmun. 2023 Sep:139:103070. doi: 10.1016/j.jaut.2023.103070. Epub 2023 Jun 12.

Abstract

Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.

Keywords: Autoimmune diseases; Autoimmunity; COVID-19; Cross-reactivity; Molecular mimicry; SARS-CoV-2; Vaccines.

Publication types

  • Review

MeSH terms

  • Animals
  • Autoimmune Diseases* / epidemiology
  • Autoimmunity
  • COVID-19*
  • Molecular Docking Simulation
  • Molecular Mimicry
  • SARS-CoV-2