Molecular detection of SARS-CoV-2 infection in three geo-political zones of Nigeria: a cross-sectional study

Pan Afr Med J. 2023 Mar 27:44:146. doi: 10.11604/pamj.2023.44.146.37400. eCollection 2023.

Abstract

Introduction: sequel to the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its subsequent spread to all continents of the world, humans have continued to experience severe devastation to their health and economies. To control the spread of this virus, it is important to detect the infection in recently infected and asymptomatic individuals who are capable of infecting others. This study was designed to detect ongoing SARS-CoV-2 Infection among asymptomatic individuals in open markets across three geopolitical zones in Nigeria.

Methods: nasal and oropharyngeal swab samples were collected from 2,158 study participants between December 20th, 2020 and March 20th, 2021 from large open markets across three geo-political zones (Southwest, Northwest and Southeast) of Nigeria. Virus RNA was extracted from these swab samples and real time reverse transcription polymerase chain reaction (RT-PCR) was carried out for the detection of SARS-CoV-2 specific genes. Data were analysed using descriptive statistics.

Results: a total of 163 (7.6%) of the 2,158 participants enrolled for the study tested positive for SARS-CoV-2 by RT-PCR. The rate of infection was significantly higher in the North-western States of the country when compared to the western and Eastern regions (P=0.000). Similarly, the rate of infection was higher among buyers than sellers (P=0.000) and among males when compared with females, though the difference was not significant (p=0.31).

Conclusion: this study shows that there is a continuous spread of SARS-CoV-2, especially among active, asymptomatic individuals across many States in the country. There is therefore need to continuously educate citizens on the need to adhere to both the non-pharmaceutical and pharmaceutical preventive measures to protect themselves and ultimately curb the spread of the virus.

Keywords: COVID-19; Nigeria; SARS-CoV-2 infection; markets.

MeSH terms

  • COVID-19 Testing
  • COVID-19* / diagnosis
  • COVID-19* / epidemiology
  • Cross-Sectional Studies
  • Female
  • Humans
  • Male
  • Nigeria / epidemiology
  • SARS-CoV-2