Human subsistence and signatures of selection on chemosensory genes

Commun Biol. 2023 Jul 3;6(1):683. doi: 10.1038/s42003-023-05047-y.

Abstract

Chemosensation (olfaction, taste) is essential for detecting and assessing foods, such that dietary shifts elicit evolutionary changes in vertebrate chemosensory genes. The transition from hunting and gathering to agriculture dramatically altered how humans acquire food. Recent genetic and linguistic studies suggest agriculture may have precipitated olfactory degeneration. Here, we explore the effects of subsistence behaviors on olfactory (OR) and taste (TASR) receptor genes among rainforest foragers and neighboring agriculturalists in Africa and Southeast Asia. We analyze 378 functional OR and 26 functional TASR genes in 133 individuals across populations in Uganda (Twa, Sua, BaKiga) and the Philippines (Agta, Mamanwa, Manobo) with differing subsistence histories. We find no evidence of relaxed selection on chemosensory genes in agricultural populations. However, we identify subsistence-related signatures of local adaptation on chemosensory genes within each geographic region. Our results highlight the importance of culture, subsistence economy, and drift in human chemosensory perception.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Adaptation, Physiological
  • Biological Evolution*
  • Diet*
  • Humans
  • Rainforest