Exploration of complement split products in plasma and urine as biomarkers of kidney graft rejection

Immunobiology. 2023 Jul;228(4):152462. doi: 10.1016/j.imbio.2023.152462. Epub 2023 Jun 24.

Abstract

Introduction: The complement system, consisting of more than thirty different soluble and cell-bound proteins, exerts essential functions both in the innate and adaptive immune systems and is believed to be an important contributor to allograft injury in kidney transplantation. The anaphylatoxins C3a and C5a are powerful chemoattractants, recruiting immune effector cells toward the site of complement activation and enhance T-cell response, while C3dg binding to CR2 on B-cells, enhances B-cell immunity at several stages of the B-cell differentiation. Complement split products in plasma and urine could reflect ongoing inflammation and tissue injury. We, therefore, investigated if complement split products increase in plasma and urine in kidney transplant recipients with rejection.

Method: In this case-control feasibility study, complement factors C3a, C3dg, C4a, and C5a were measured in plasma and C3dg and sC5b-9 associated C9 neoantigen in urine in 15 kidney transplant recipients with rejection (cases) and 15 kidney transplant recipients without (controls). The groups were matched on the type of transplantation and the time from transplantation to sampling. The complement split products were compared (i) between cases and controls and (ii) within the rejection group over time, comparing the measurements at rejection with measurements where the kidney transplant recipients were clinically stable. Possible moderators were explored, and results adjusted accordingly. P values < 0.05 were considered significant. Plasma C3dg was analyzed by immune-electrophoresis, plasma C3a, plasma C4a, and plasma C5a by flow cytometry, and urine C3dg and urine C9neo by ELISA.

Results: In plasma, there were no significant differences between the rejection and the control group. However, steroids and pretransplant C3dg levels significantly influenced C3dg. Within the rejection group, plasma C3a and C3dg were significantly higher at the time of rejection compared to the stable phase (p < 0.01). In urine, C3dg/creatinine and C9 neoantigen/creatinine ratios were not different between the rejection and the control group. Urine C3dg/creatinine and urine C9 neoantigen/creatinine ratios correlated to urine albumin and significantly increased after the transplantation (p < 0.001).

Conclusion: This study shows increased plasma C3a and C3dg in kidney transplant recipients, primarily with T cell mediated rejection. This finding suggests that consecutive measurements of C3a and C3dg in plasma could be applicable to monitor alloreactivity in kidney transplant recipients. Urine complement split products are unsuitable as rejection biomarkers since the permeability of the glomerular filtration barrier strongly influences them. Prospective longitudinal studies on plasma C3a and C3dg dynamics will be needed to validate present findings.

Keywords: Allograft rejection; Biomarker; Complement activation; Immunology; Kidney transplantation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers
  • Complement System Proteins / metabolism
  • Creatinine
  • Graft Rejection* / diagnosis
  • Humans
  • Kidney
  • Kidney Diseases*
  • Postoperative Complications
  • Prospective Studies

Substances

  • Creatinine
  • Complement System Proteins
  • Biomarkers