Selenomethionine Inhibits NF-κB-mediated Inflammatory Responses of Bovine Mammary Epithelial Cells Caused by Klebsiella pneumoniae by Increasing Autophagic Flux

Biol Trace Elem Res. 2024 Apr;202(4):1568-1581. doi: 10.1007/s12011-023-03757-2. Epub 2023 Jul 5.

Abstract

Klebsiella pneumoniae (K. pneumoniae) is one of the major pathogens causing bovine clinical mastitis. Autophagy maintains cellular homeostasis and resists excessive inflammation in eukaryotic organisms. Selenomethionine (Se-Met) is commonly used as a source of selenium supplementation for dairy cows. This study aimed to investigate the effects of Se-Met on inflammatory responses mediated by nuclear factor-kappa B (NF-κB) through autophagy. We infected bovine mammary epithelial cell line (MAC-T) with K. pneumoniae and examined the expression of autophagy-related proteins and changes in autophagic vesicles, LC3 puncta, and autophagic flux at various intervals. The results showed that K. pneumoniae activated the early-stage autophagy of MAC-T cells. The levels of LC3-II, Beclin1, and ATG5, as well as the number of LC3 puncta and autophagic vesicles, increased after 2 h post-treatment. However, the late-stage autophagic flux was blocked. Furthermore, the effect of autophagy on NF-κB-mediated inflammation was investigated with different autophagy levels. The findings showed that enhanced autophagy inhibited the K. pneumoniae-induced inflammatory responses of MAC-T cells. The opposite results were found with the inhibition of autophagy. Finally, we examined the effect of Se-Met on NF-κB-mediated inflammation based on autophagy. The results indicated that Se-Met alleviated K. pneumoniae-induced autophagic flux blockage, inhibited NF-κB-mediated inflammation, and decreased the adhesion of K. pneumoniae to MAC-T cells. The inhibitory effect of Se-Met on NF-κB-mediated inflammation could be partially blocked by the autophagy inhibitor chloroquine (CQ). Overall, Se-Met attenuated K. pneumoniae-induced NF-κB-mediated inflammatory responses by enhancing autophagic flux.

Keywords: Autophagy; Bovine mammary epithelial cells; Inflammatory responses; K. pneumoniae; Selenomethionine.

MeSH terms

  • Animals
  • Autophagy
  • Cattle
  • Epithelial Cells / metabolism
  • Female
  • Inflammation / metabolism
  • Klebsiella pneumoniae
  • NF-kappa B* / metabolism
  • Selenomethionine* / metabolism
  • Selenomethionine* / pharmacology

Substances

  • NF-kappa B
  • Selenomethionine