Diversity and characteristics of plant immunity-activating bacteria from Brassicaceae plants

BMC Microbiol. 2023 Jul 5;23(1):175. doi: 10.1186/s12866-023-02920-y.

Abstract

Background: Microorganisms that activate plant immune responses are useful for application as biocontrol agents in agriculture to minimize crop losses. The present study was conducted to identify and characterize plant immunity-activating microorganisms in Brassicaceae plants.

Results: A total of 25 bacterial strains were isolated from the interior of a Brassicaceae plant, Raphanus sativus var. hortensis. Ten different genera of bacteria were identified: Pseudomonas, Leclercia, Enterobacter, Xanthomonas, Rhizobium, Agrobacterium, Pantoea, Rhodococcus, Microbacterium, and Plantibacter. The isolated strains were analyzed using a method to detect plant immunity-activating microorganisms that involves incubation of the microorganism with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses. In this method, cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells serves as a marker of immune activation. Among the 25 strains examined, 6 strains markedly enhanced cryptogein-induced ROS production in BY-2 cells. These 6 strains colonized the interior of Arabidopsis plants, and Pseudomonas sp. RS3R-1 and Rhodococcus sp. RS1R-6 selectively enhanced plant resistance to the bacterial pathogens Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovorum subsp. carotovorum NBRC 14082, respectively. In addition, Pseudomonas sp. RS1P-1 effectively enhanced resistance to both pathogens. We also comprehensively investigated the localization (i.e., cellular or extracellular) of the plant immunity-activating components produced by the bacteria derived from R. sativus var. hortensis and the components produced by previously isolated bacteria derived from another Brassicaceae plant species, Brassica rapa var. perviridis. Most gram-negative strains enhanced cryptogein-induced ROS production in BY-2 cells via the presence of cells themselves rather than via extracellular components, whereas many gram-positive strains enhanced ROS production via extracellular components. Comparative genomic analyses supported the hypothesis that the structure of lipopolysaccharides in the outer cell envelope plays an important role in the ROS-enhancing activity of gram-negative Pseudomonas strains.

Conclusions: The assay method described here based on elicitor-induced ROS production in cultured plant cells enabled the discovery of novel plant immunity-activating bacteria from R. sativus var. hortensis. The results in this study also suggest that components involved in the ROS-enhancing activity of the bacteria may differ depending largely on genus and species.

Keywords: Biocontrol; Brassicaceae; Cultured plant cells; Endophyte; Induced systemic resistance; Plant immunity; Priming; Reactive oxygen species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis*
  • Brassicaceae*
  • Plant Diseases / microbiology
  • Plant Immunity
  • Pseudomonas syringae / genetics
  • Reactive Oxygen Species

Substances

  • Reactive Oxygen Species