Suspended graphene film is of great significance for building high-performance electrical devices. However, fabricating large-area suspended graphene film with good mechanical properties is still a challenge, especially for the chemical vapor deposition (CVD)-grown graphene films. In this work, the mechanical properties of suspended CVD-grown graphene film are investigated systematically for the first time. It is found that monolayer graphene film is hard to maintain on circular holes with a diameter of tens of micrometers, which can be improved greatly by increasing the layer of graphene films. The mechanical properties of CVD-grown multilayer graphene films suspended on a circular hole with a diameter of 70 µm can be increased by 20%, and multilayer graphene films prepared by layer-layer stacking process can be increased by up to 400% for the same size. The corresponding mechanism was also discussed in detail, which might pave the way for building high-performance electrical devices based on high-strength suspended graphene film.
Keywords: chemical vapor deposition; mechanical properties; suspended graphene film.