Purpose: Although immunotherapy is the mainstay of therapy for advanced non-small cell lung cancer (NSCLC), robust biomarkers of clinical response are lacking. The heterogeneity of clinical responses together with the limited value of radiographic response assessments to timely and accurately predict therapeutic effect -especially in the setting of stable disease-call for the development of molecularly-informed real-time minimally invasive predictive biomarkers. In addition to capturing tumor regression, liquid biopsies may be informative in evaluating immune-related adverse events (irAEs).
Experimental design: We investigated longitudinal changes in circulating tumor DNA (ctDNA) in patients with metastatic NSCLC who received immunotherapy-based regimens. Using ctDNA targeted error-correction sequencing together with matched sequencing of white blood cells and tumor tissue, we tracked serial changes in cell-free tumor load (cfTL) and determined molecular response for each patient. Peripheral T-cell repertoire dynamics were serially assessed and evaluated together with plasma protein expression profiles.
Results: Molecular response, defined as complete clearance of cfTL, was significantly associated with progression-free (log-rank p=0.0003) and overall survival (log-rank p=0.01) and was particularly informative in capturing differential survival outcomes among patients with radiographically stable disease. For patients who developed irAEs, peripheral blood T-cell repertoire reshaping, assessed by significant TCR clonotypic expansions and regressions were noted on-treatment.
Conclusions: Molecular responses assist with interpretation of heterogeneous clinical responses especially for patients with stable disease. Our complementary assessment of the tumor and immune compartments by liquid biopsies provides an approach for monitoring of clinical benefit and immune-related toxicities for patients with NSCLC receiving immunotherapy.
Statement of translational relevance: Longitudinal dynamic changes in cell-free tumor load and reshaping of the peripheral T-cell repertoire capture clinical outcomes and immune-related toxicities during immunotherapy for patients with non-small cell lung cancer.