Piperlongumine (PL) is a well-known bioactive alkaloid that has been reported as a potent anticancer molecule but has failed to provide potential activity in translational and clinical applications due to some drawbacks like low bioavailability, hydrophobicity, and rapid degradation. However, nano-formulation is a good choice to increase the bioavailability and enhance cellular uptake of PL. In this study, PL loaded nano-liposomes (NPL) were formulated using the thin-film hydration method and analyzed by Response Surface Methodology (RSM) in order to treat cervical cancer. The NPL were thoroughly characterized using particle size, PDI, zeta potential, drug loading capacity, encapsulation efficiency, SEM, AFM and FTIR. Different assays viz. MTT, AO/PI, DAPI, MMP, cell migration, DCFDA and apoptotic assay using Annexin V-FITC/PI were performed for anticancer potential of NPL in human cervical carcinoma cells (SiHa and HeLa). NPL showed enhanced cytotoxicity, diminished cell proliferation, reduced cell viability, enhanced nuclear condensation, reduction in mitochondrial membrane potential, inhibited cell migration, increased ROS level and promoted more apoptosis in both human cervical cancer cell lines. These findings demonstrated that NPL may be a potential therapeutic option for cervical cancer.
Keywords: Anticancer activity; Apoptosis; Cell lines; Cervical cancer; Characterization; Nano-liposomes; Piperlongumine.
Copyright © 2023 Elsevier B.V. All rights reserved.