Background: An alteration in the force distribution among quadriceps heads is one possible underlying mechanism of patellofemoral pain. However, this hypothesis cannot be directly tested as there are currently no noninvasive experimental techniques to measure individual muscle force or torque in vivo in humans. In this study, the authors considered a combination of biomechanical and muscle activation measures, which enabled us to estimate the mechanical impact of the vastus medialis (VM) and vastus lateralis (VL) on the patella.
Purpose/hypothesis: The purpose of this study was to determine whether the relative index of torque distribution for the VM and VL differs between adolescents with and without patellofemoral pain. It was hypothesized that, relative to the VL, the VM would contribute less to knee extension torque in adolescents with patellofemoral pain compared with controls.
Study design: Cross-sectional study; Level of evidence, 3.
Methods: Twenty adolescents with patellofemoral pain and 20 matched control participants were included (38 female; age, 15.3 ± 1.8 years; weight, 58 ± 13 kg; height, 164 ± 8 cm). Muscle volumes and resting moment arms were quantified from magnetic resonance images, and fascicle lengths were obtained from panoramic B-mode ultrasonography. Muscle activation was estimated using surface electromyography during submaximal isometric tasks (wall-squat and seated tasks). Muscle torque was estimated as the product of muscle physiological cross-sectional area (ie, muscle volume/fascicle length), muscle activation (normalized to maximal activation), and moment arm.
Results: Across tasks and force levels, the relative contribution of the VM to the overall medial and lateral vastii torque was 31.0% ± 8.6% for controls and 31.5 ± 7.6% for adolescents with patellofemoral pain (group effect, P > .34).
Conclusion: For the tasks and positions investigated in this study, the authors found no evidence of lower VM torque generation (relative to the VL) in adolescents with patellofemoral pain compared with controls.
Keywords: electromyography; moment arm; muscle coordination; musculoskeletal disorder; physiological cross-sectional area.
© The Author(s) 2023.