Background: Prostate smooth muscle contraction and stromal growth may contribute to lower urinary tract symptoms suggestive of benign prostatic hyperplasia, but are incompletely understood. A role of the monomeric GTPase CDC42 for smooth muscle contraction and proliferation appears possible, but is unknown for the prostate. Here, we silenced CDC42 expression in prostate stromal cells (WPMY-1), and examined contractility, growth-related functions and responses to the presumed CDC42 inhibitor, ML141.
Methods: WPMY-1 cells were transfected with scrambled or CDC42-specific siRNA, and characterized for GTPase activities, contraction, proliferation, colony formation, apoptosis, cell death and viability. Effects of ML141 were examined in cells with and without silencing.
Results: CDC42 silencing was confirmed by reduced mRNA and protein expression, and reduced CDC42 activity. Silencing impaired contraction (23-47 %), actin organization (25 %), proliferation (17-63 %), colony formation and viability (64-89 %), and increased the percentage of dead cells (2.6-fold). ML141 mimicked the phenotype of silencing in scrambled siRNA-transfected controls, and in non-transfected WPMY-1 cells, including inhibition of contraction, proliferation, colony formation and viability, breakdown of actin organization and increased cell death. In CDC42-silenced cells, ML141 still affected phalloiding organization, proliferation and cell death, with effect sizes resembling controls without silencing. ML141 inhibited RhoA activity in CDC42-silenced cells, but not in cells without silencing.
Conclusions: CDC42 promotes contraction of prostate stromal cells, and drives stromal growth by CDC42-mediated proliferation and suppression of apoptosis-independent cell death. ML141 mimicks all effects of CDC42 silencing, but its specificity may be limited and depends on GTPase phenotypes of cells.
Keywords: Benign prostatic hyperplasia (BPH); CDC42; Lower urinary tract symptoms (LUTS); ML141; Monomeric GTPase; Prostate smooth muscle contraction.
Copyright © 2023 Elsevier Inc. All rights reserved.