Textile and pharmaceutical effluents contain significant amounts of dyes and antibiotics, which pose a serious threat to the ecosystem when discharged directly. Therefore, they should be treated by facile treatment techniques using low-cost materials. Layered double hydroxide (LDH) and its hybrids have emerged as robust and economic adsorbents for water treatment. Herein, magnesium/aluminum LDH and its starch-based composite were synthesized by a co-precipitation technique. The physicochemical features of the developed adsorbents were thoroughly characterized using various analytical tools. The developed materials were tested for the eradication of methylene blue (MB) and amoxicillin (AMX) in batch mode adsorption by varying operating conditions. Adsorption performance depends on the solution's pH. Under optimum adsorption conditions of pH 11, adsorbent dosage of 50 mg/L, and treatment time of 120 min, starch-impregnated MgAl-LDH exhibited maximum MB and AMX adsorption capacities of 114.94 and 48.08 mg/g, respectively. The adsorption mechanism states that hydrogen bonds and weak van der Waals forces are responsible for the removal of pollutants by the developed materials. Moreover, equilibrium and kinetic studies revealed that the removal of dye and antibiotic followed the Freundlich and Langmuir models with the pseudo-second-order reaction kinetics, respectively. The spent adsorbents were regenerated using 0.1 M HCl (for MB) and methanol (for AMX) eluent, and reusability studies ensured that the developed adsorbents retained their performance for up to four consecutive adsorption/desorption cycles. MgAl-LDH and its starch-based hybrid could thus be used to effectively remove organic contaminants from wastewater streams on a commercial scale.
Keywords: Clay-based adsorbent; Dyes and antibiotics removal; Plausible mechanism; Simultaneous adsorption; Thermo-kinetic analysis.
Copyright © 2023 Elsevier Inc. All rights reserved.