Characterization of a high throughput approach for large scale retention measurement in liquid chromatography

J Chromatogr A. 2023 Aug 30:1705:464182. doi: 10.1016/j.chroma.2023.464182. Epub 2023 Jun 28.

Abstract

Many contemporary challenges in liquid chromatography-such as the need for "smarter" method development tools, and deeper understanding of chromatographic phenomena-could be addressed more efficiently and effectively with larger volumes of experimental retention data than are available. The paucity of publicly accessible, high-quality measurements needed for the development of retention models and simulation tools has largely been due to the high cost in time and resources associated with traditional retention measurement approaches. Recently we described an approach to improve the throughput of such measurements by using very short columns (typically 5 mm), while maintaining measurement accuracy. In this paper we present a perspective on the characteristics of a dataset containing about 13,000 retention measurements obtained using this approach, and describe a different sample introduction method that is better suited to this application than the approach we used in prior work. The dataset comprises results for 35 different small molecules, nine different stationary phases, and several mobile phase compositions for each analyte/phase combination. During the acquisition of these data, we have interspersed repeated measurements of a small number of compounds for quality control purposes. The data from these measurements not only enable detection of outliers but also assessment of the repeatability and reproducibility of retention measurements over time. For retention factors greater than 1, the mean relative standard deviation (RSD) of replicate (typically n=5) measurements is 0.4%, and the standard deviation of RSDs is 0.4%. Most differences between selectivity values measured six months apart for 15 non-ionogenic compounds were in the range of +/- 1%, indicating good reproducibility. A critically important observation from these analyses is that selectivity defined as retention of a given analyte relative to the retention of a reference compound (kx/kref) is a much more consistent measure of retention over a time span of months compared to the retention factor alone. While this work and dataset also highlight the importance of stationary phase stability over time for achieving reliable retention measurements, we are nevertheless optimistic that this approach will enable the compilation of large databases (>> 10,000 measurements) of retention values over long time periods (years), which can in turn be leveraged to address some of the most important contemporary challenges in liquid chromatography. All the data discussed in the manuscript are provided as Supplemental Information.

Keywords: Database; High throughput; Liquid chromatography; Retention; Selectivity.

MeSH terms

  • Chromatography, High Pressure Liquid / methods
  • Chromatography, Liquid / methods
  • Computer Simulation
  • Databases, Factual
  • Indicators and Reagents
  • Reproducibility of Results*

Substances

  • Indicators and Reagents