Alzheimer's disease (AD) is one of the world's most pressing health crises. AD is an incurable disease affecting more than 6.5 million Americans, predominantly the elderly, and in its later stages, leads to memory loss, dementia, and death. Amyloid β (Aβ) protein aggregates have been one of the pathological hallmarks of AD since its initial characterization. The early stages of Aβ accumulation and aggregation involve the formation of oligomers, which are considered neurotoxic and play a key role in further aggregation into fibrils that eventually appear in the brain as amyloid plaques. We have recently shown by combining ion mobility mass spectrometry (IM-MS) and atomic force microscopy (AFM) that Aβ42 rapidly forms dodecamers (12-mers) as the terminal oligomeric state, and these dodecamers seed the early formation of Aβ42 protofibrils. The link between soluble oligomers and fibril formation is one of the essential aspects for understanding the root cause of the disease state and is critical to developing therapeutic interventions. Utilizing a joint pharmacophore space (JPS) method, potential drugs have been designed specifically for amyloid-related diseases. These small molecules were generated based on crucial chemical features necessary for target selectivity. In this paper, we utilize our combined IM-MS and AFM methods to investigate the impact of three second-generation JPS small-molecule inhibitors, AC0201, AC0202, and AC0203, on dodecamer as well as fibril formation in Aβ42. Our results indicate that AC0201 works well as an inhibitor and remodeler of both dodecamers and fibril formation, AC0203 behaves less efficiently, and AC0202 is ineffective.
Keywords: AFM; Alzheimer’s disease; Aβ42; IM-MS; joint pharmacophore space; small molecule; toxic oligomers.