Breast Cancer Diagnosis Based on IoT and Deep Transfer Learning Enabled by Fog Computing

Diagnostics (Basel). 2023 Jun 27;13(13):2191. doi: 10.3390/diagnostics13132191.

Abstract

Across all countries, both developing and developed, women face the greatest risk of breast cancer. Patients who have their breast cancer diagnosed and staged early have a better chance of receiving treatment before the disease spreads. The automatic analysis and classification of medical images are made possible by today's technology, allowing for quicker and more accurate data processing. The Internet of Things (IoT) is now crucial for the early and remote diagnosis of chronic diseases. In this study, mammography images from the publicly available online repository The Cancer Imaging Archive (TCIA) were used to train a deep transfer learning (DTL) model for an autonomous breast cancer diagnostic system. The data were pre-processed before being fed into the model. A popular deep learning (DL) technique, i.e., convolutional neural networks (CNNs), was combined with transfer learning (TL) techniques such as ResNet50, InceptionV3, AlexNet, VGG16, and VGG19 to boost prediction accuracy along with a support vector machine (SVM) classifier. Extensive simulations were analyzed by employing a variety of performances and network metrics to demonstrate the viability of the proposed paradigm. Outperforming some current works based on mammogram images, the experimental accuracy, precision, sensitivity, specificity, and f1-scores reached 97.99%, 99.51%, 98.43%, 80.08%, and 98.97%, respectively, on the huge dataset of mammography images categorized as benign and malignant, respectively. Incorporating Fog computing technologies, this model safeguards the privacy and security of patient data, reduces the load on centralized servers, and increases the output.

Keywords: Fog computing; IoT; breast cancer diagnosis; convolutional neural network (CNN); deep transfer learning (DTL).