Iridium Complexes with BIAN-Type Ligands: Synthesis, Structure and Redox Chemistry

Int J Mol Sci. 2023 Jun 21;24(13):10457. doi: 10.3390/ijms241310457.

Abstract

A series of iridium complexes with bis(diisopropylphenyl)iminoacenaphtene (dpp-bian) ligands, [Ir(cod)(dpp-bian)Cl] (1), [Ir(cod)(NO)(dpp-bian)](BF4)2 (2) and [Ir(cod)(dpp-bian)](BF4) (3), were prepared and characterized by spectroscopic techniques, elemental analysis, X-ray diffraction analysis and cyclic voltammetry (CV). The structures of 1-3 feature a square planar backbone consisting of two C = C π-bonds of 1,5-cyclooctadiene (cod) and two nitrogen atoms of dpp-bian supplemented with a chloride ion (for 1) or a NO group (for 2) to complete a square-pyramidal geometry. In the nitrosyl complex 2, the Ir-N-O group has a bent geometry (the angle is 125°). The CV data for 1 and 3 show two reversible waves between 0 and -1.6 V (vs. Ag/AgCl). Reversible oxidation was also found at E1/2 = 0.60 V for 1. Magnetochemical measurements for 2 in a range from 1.77 to 300 K revealed an increase in the magnetic moment with increasing temperature up to 1.2 μB (at 300 K). Nitrosyl complex 2 is unstable in solution and loses its NO group to yield [Ir(cod)(dpp-bian)](BF4) (3). A paramagnetic complex, [Ir(cod)(dpp-bian)](BF4)2 (4), was also detected in the solution of 2 as a result of its decomposition. The EPR spectrum of 4 in CH2Cl2 is described by the spin Hamiltonian Ĥ = gβHŜ with S = 1/2 and gxx = gyy = 2.393 and gzz = 1.88, which are characteristic of the low-spin 5d7-Ir(II) state. DFT calculations were carried out in order to rationalize the experimental results.

Keywords: BIAN; DFT calculations; EPR spectroscopy; crystal structure; cyclic voltammetry; iridium; iridium(II); nitrosyl complexes; non-innocence; redox isomerism; redox-active ligands; static magnetic susceptibility; synthesis.

MeSH terms

  • Crystallography, X-Ray
  • Iridium* / chemistry
  • Ligands
  • Oxidation-Reduction
  • Spectrum Analysis

Substances

  • Iridium
  • Ligands