S-Nitrosylation of Tissue Transglutaminase in Modulating Glycolysis, Oxidative Stress, and Inflammatory Responses in Normal and Indoxyl-Sulfate-Induced Endothelial Cells

Int J Mol Sci. 2023 Jun 30;24(13):10935. doi: 10.3390/ijms241310935.

Abstract

Circulating uremic toxin indoxyl sulfate (IS), endothelial cell (EC) dysfunction, and decreased nitric oxide (NO) bioavailability are found in chronic kidney disease patients. NO nitrosylates/denitrosylates a specific protein's cysteine residue(s), forming S-nitrosothios (SNOs), and the decreased NO bioavailability could interfere with NO-mediated signaling events. We were interested in investigating the underlying mechanism(s) of the reduced NO and how it would regulate the S-nitrosylation of tissue transglutaminase (TG2) and its substrates on glycolytic, redox and inflammatory responses in normal and IS-induced EC injury. TG2, a therapeutic target for fibrosis, has a Ca2+-dependent transamidase (TGase) that is modulated by S-nitrosylation. We found IS increased oxidative stress, reduced NADPH and GSH levels, and uncoupled eNOS to generate NO. Immunoblot analysis demonstrated the upregulation of an angiotensin-converting enzyme (ACE) and significant downregulation of the beneficial ACE2 isoform that could contribute to oxidative stress in IS-induced injury. An in situ TGase assay demonstrated IS-activated TG2/TGase aminylated eNOS, NFkB, IkBα, PKM2, G6PD, GAPDH, and fibronectin (FN), leading to caspases activation. Except for FN, TGase substrates were all differentially S-nitrosylated either with or without IS but were denitrosylated in the presence of a specific, irreversible TG2/TGase inhibitor ZDON, suggesting ZDON-bound TG2 was not effectively transnitrosylating to TG2/TGase substrates. The data suggest novel roles of TG2 in the aminylation of its substrates and could also potentially function as a Cys-to-Cys S-nitrosylase to exert NO's bioactivity to its substrates and modulate glycolysis, redox, and inflammation in normal and IS-induced EC injury.

Keywords: GAPDH; IS; NADPH oxidase; NO; NOX; PTM; ROS; TG2; TGase; eNOS; endothelial NO synthase; glyceraldehyde 3-phosphate dehydrogenase; indoxyl sulfate; nitric oxide; post-translational modification; reactive oxygen species; tissue transglutaminase; transamidation activity.

MeSH terms

  • Endothelial Cells
  • Glycolysis
  • Humans
  • Indican*
  • Oxidative Stress
  • Protein Glutamine gamma Glutamyltransferase 2*
  • Sulfates

Substances

  • Protein Glutamine gamma Glutamyltransferase 2
  • Indican
  • indoxyl
  • Sulfates