Reductive soil disinfestation (RSD) is an effective bioremediation technique to restructure the soil microbial community and eliminate soilborne phytopathogens. Yet we still lack a comprehensive understanding of the keystone taxa involved and their roles in ecosystem functioning in degraded soils treated by RSD. In this study, the bacteriome network structure in RSD-treated soil and the subsequent cultivation process were explored. As a result, bacterial communities in RSD-treated soil developed more complex topologies and stable co-occurrence patterns. The richness and diversity of keystone taxa were higher in the RSD group (module hub: 0.57%; connector: 23.98%) than in the Control group (module hub: 0.16%; connector: 19.34%). The restoration of keystone taxa in RSD-treated soil was significantly (P < 0.01) correlated with soil pH, total organic carbon, and total nitrogen. Moreover, a strong negative correlation (r = -0.712; P < 0.01) was found between keystone taxa richness and Fusarium abundance. Our results suggest that keystone taxa involved in the RSD network structure are capable of maintaining a flexible generalist mode of metabolism, namely with respect to nitrogen fixation, methylotrophy, and methanotrophy. Furthermore, distinct network modules composed by numerous anti-pathogen agents were formed in RSD-treated soil; i.e., the genera Hydrogenispora, Azotobacter, Sphingomonas, and Clostridium_8 under the soil treatment stage, and the genera Anaerolinea and Pseudarthrobacter under the plant cultivation stage. The study provides novel insights into the association between fungistasis and keystone or sensitive taxa in RSD-treated soil, with significant implications for comprehending the mechanisms of RSD. KEY POINTS: • RSD enhanced bacteriome network stability and restored keystone taxa. • Keystone taxa richness was negatively correlated with Fusarium abundance. • Distinct sensitive OTUs and modules were formed in RSD soil.
Keywords: Bacteriome network; Fungistasis; Keystone taxa; Reductive soil disinfestation; Sensitive OTU.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.