The widespread use of neodymium oxide nanoparticles (NPs-Nd2O3) has caused environmental pollution and human health problems, thus attracting significant attention. Understanding the mechanisms of NPs- Nd2O3-induced genetic damage is of great significance for identifying early markers for NPs- Nd2O3-induced lung injury. At present, the mechanisms underlying DNA damage induced by NPs- Nd2O3 remain unclear. In this study, we performed functional assays on human bronchial epithelial cells (16HBEs) exposed to various concentrations of NPs-Nd2O3 and SD rats administered with a single intratracheal instillation with NPs-Nd2O3. Exposure to NPs-Nd2O3 could lead to DNA damage in 16HBE cells and rat lung tissue cells. We found a novel long non-coding RNA, named CNTFR-AS1, which was highly expressed after exposure to NPs-Nd2O3. Our data verified that transcription factor TP63 mediates the high expression levels of CNTFR-AS1, which in turn regulates NPs-Nd2O3-induced DNA damage in cells by inhibiting HR repair. Moreover, the levels of CNTFR-AS1 were correlated with the number of years worked by occupational workers. Collectively, these results demonstrate that CNTFR-AS1 acts as a novel DNA damage regulator in bronchial epithelial cells exposed to NPs-Nd2O3. Hence, our data provide a basis for the identification of lncRNAs as early diagnostic markers for rare earth lung injury.
Keywords: DNA damage; Homologous recombination repair; Long non-coding RNA CNTFR-AS1; Nanoparticles of neodymium oxide (NPs-Nd(2)O(3)).
Copyright © 2023 Elsevier Ltd. All rights reserved.