Unveiling phase diagram of the lightly doped high-Tc cuprate superconductors with disorder removed

Nat Commun. 2023 Jul 14;14(1):4064. doi: 10.1038/s41467-023-39457-7.

Abstract

The currently established electronic phase diagram of cuprates is based on a study of single- and double-layered compounds. These CuO2 planes, however, are directly contacted with dopant layers, thus inevitably disordered with an inhomogeneous electronic state. Here, we solve this issue by investigating a 6-layered Ba2Ca5Cu6O12(F,O)2 with inner CuO2 layers, which are clean with the extremely low disorder, by angle-resolved photoemission spectroscopy (ARPES) and quantum oscillation measurements. We find a tiny Fermi pocket with a doping level less than 1% to exhibit well-defined quasiparticle peaks which surprisingly lack the polaronic feature. This provides the first evidence that the slightest amount of carriers is enough to turn a Mott insulating state into a metallic state with long-lived quasiparticles. By tuning hole carriers, we also find an unexpected phase transition from the superconducting to metallic states at 4%. Our results are distinct from the nodal liquid state with polaronic features proposed as an anomaly of the heavily underdoped cuprates.

MeSH terms

  • Copper*
  • Electronics
  • Phase Transition
  • Superconductivity*

Substances

  • cupric oxide
  • Copper