Electrochemical impedance spectroscopy (EIS) is a highly effective technique for studying the surface of electrodes in great detail. EIS-based electrochemical sensors have been widely reported, which measure the charge transfer resistance (Rct) of redox probes on electrode surfaces to monitor the binding of target molecules. One of the protective drugs against hemorrhagic cystitis caused by oxazaphosphorine chemotherapy drugs such as ifosfamide, cyclophosphamide and trophosphamide is Mesna (sodium salt of 2-mercaptoethanesulfonate). The increase in the use of Mesna due to the high consumption of anti-cancer drugs, the determination of this drug in biological samples is of particular importance. So far, no electrochemical method has been reported to measure Mesna. In this research, a novel impedimetric sensor based on a glassy carbon electrode (GCE) modified with oxidized multiwalled carbon nanotubes (MWCNTs)/gold nanoparticle (AuNPs) (denoted as Au NPs/MWCNTs/GCE) for impedimetric determination of Mesna anticancer drug was developed. The modified electrode materials were characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), and EIS. The electrochemical behavior of Mesna at the surface of Au NPs/MWCNTs/GCE was studied by an impedimetric method. The detection mechanism of Mesna using the proposed impedimetric sensor relied on the increase in the Rct value of [Fe (CN)6]3-/4- as an electrochemical probe in the presence of Mesna compared to the absence of Mesna as the analyte. Under the optimum condition, which covered two linear dynamic ranges from 0.06 nmol L-1 to 1.0 nmol L-1 and 1.0 nmol L-1 to 130.0 µmol L-1, respectively. The detection limit was 0.02 nmol L-1. Finally, the performance of the proposed sensor was investigated for Mesna electrochemical detection in biological samples.
© 2023. The Author(s).