Improving Copper(II) Sensitivity by Combined use of AIEE Active and Inactive Schiff Bases

J Fluoresc. 2024 May;34(3):1065-1074. doi: 10.1007/s10895-023-03347-4. Epub 2023 Jul 15.

Abstract

An aggregation-induced emission enhancement (AIEE) active Schiff base PNN was synthesized by condensing benzidine with 2-hydroxynaphthaldehyde. The green-fluorescent PNN (λem = 510 nm) in DMF turned to yellow-fluorescent PNN (λem = 557 nm) upon increasing the fractions of HEPES buffer (10 mM, pH 7.4) above 40%. The DLS study supports the self-aggregation of PNN that restricts the intramolecular rotation and activates the excited-state intramolecular proton transfer (ESIPT) process. The fluorescence emission of AIEE active PNN was quenched by Cu2+ with an estimated detection limit of 2.1 µM. Interestingly, the detection limit of PNN towards Cu2+ was improved in the presence of an AIEE inactive Schiff base PBPM obtained by reacting 1,4-diaminobenzene with pyridine-4-carbaldehyde. The mixed PNN-PBPM showed a detection limit of 0.49 µM. The practical utility of PNN-PBPM was validated by quantifying Cu2+ ions in real environmental water samples and green tea.

Keywords: Aggregation-induced emission enhancement; Cu2+; Fluorescence sensor; Schiff base.