A hierarchical intervention scheme based on epidemic severity in a community network

J Math Biol. 2023 Jul 15;87(2):29. doi: 10.1007/s00285-023-01964-y.

Abstract

As there are no targeted medicines or vaccines for newly emerging infectious diseases, isolation among communities (villages, cities, or countries) is one of the most effective intervention measures. As such, the number of intercommunity edges ([Formula: see text]) becomes one of the most important factor in isolating a place since it is closely related to normal life. Unfortunately, how [Formula: see text] affects epidemic spread is still poorly understood. In this paper, we quantitatively analyzed the impact of [Formula: see text] on infectious disease transmission by establishing a four-dimensional [Formula: see text] edge-based compartmental model with two communities. The basic reproduction number [Formula: see text] is explicitly obtained subject to [Formula: see text] [Formula: see text]. Furthermore, according to [Formula: see text] with zero [Formula: see text], epidemics spread could be classified into two cases. When [Formula: see text] for the case 2, epidemics occur with at least one of the reproduction numbers within communities greater than one, and otherwise when [Formula: see text] for case 1, both reproduction numbers within communities are less than one. Remarkably, in case 1, whether epidemics break out strongly depends on intercommunity edges. Then, the outbreak threshold in regard to [Formula: see text] is also explicitly obtained, below which epidemics vanish, and otherwise break out. The above two cases form a severity-based hierarchical intervention scheme for epidemics. It is then applied to the SARS outbreak in Singapore, verifying the validity of our scheme. In addition, the final size of the system is gained by demonstrating the existence of positive equilibrium in a four-dimensional coupled system. Theoretical results are also validated through numerical simulation in networks with the Poisson and Power law distributions, respectively. Our results provide a new insight into controlling epidemics.

Keywords: Basic reproduction number; Community; Networks; The final size; Threshold of intercommunity edges.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Basic Reproduction Number
  • Communicable Diseases* / epidemiology
  • Community Networks
  • Computer Simulation
  • Epidemics* / prevention & control
  • Humans
  • Models, Biological