Cancer cell employs a microenvironmental neural signal trans-activating nucleus-mitochondria coordination to acquire stemness

Signal Transduct Target Ther. 2023 Jul 19;8(1):275. doi: 10.1038/s41392-023-01487-4.

Abstract

Cancer cell receives extracellular signal inputs to obtain a stem-like status, yet how tumor microenvironmental (TME) neural signals steer cancer stemness to establish the hierarchical tumor architectures remains elusive. Here, a pan-cancer transcriptomic screening for 10852 samples of 33 TCGA cancer types reveals that cAMP-responsive element (CRE) transcription factors are convergent activators for cancer stemness. Deconvolution of transcriptomic profiles, specification of neural markers and illustration of norepinephrine dynamics uncover a bond between TME neural signals and cancer-cell CRE activity. Specifically, neural signal norepinephrine potentiates the stemness of proximal cancer cells by activating cAMP-CRE axis, where ATF1 serves as a conserved hub. Upon activation by norepinephrine, ATF1 potentiates cancer stemness by coordinated trans-activation of both nuclear pluripotency factors MYC/NANOG and mitochondrial biogenesis regulators NRF1/TFAM, thereby orchestrating nuclear reprograming and mitochondrial rejuvenating. Accordingly, single-cell transcriptomes confirm the coordinated activation of nuclear pluripotency with mitochondrial biogenesis in cancer stem-like cells. These findings elucidate that cancer cell acquires stemness via a norepinephrine-ATF1 driven nucleus-mitochondria collaborated program, suggesting a spatialized stemness acquisition by hijacking microenvironmental neural signals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Nucleus / genetics
  • Cell Nucleus / metabolism
  • Mitochondria / genetics
  • Mitochondria / metabolism
  • Neoplasms* / metabolism
  • Neoplastic Stem Cells / metabolism
  • Norepinephrine / metabolism
  • Norepinephrine / pharmacology
  • Transcription Factors*

Substances

  • Transcription Factors
  • Norepinephrine