Designing and modulating the electronic and spatial environments surrounding metal centers is a crucial issue in a wide range of chemistry fields that use organometallic compounds. Herein, we demonstrate a Lewis-acid-mediated reversible expansion, contraction, and transformation of the spatial environment surrounding nickel(0) centers that bear N-phosphine oxide-substituted N-heterocyclic carbenes (henceforth referred to as (S)PoxIms). Reaction between tetrahedral (syn-κ-C,O-(S)PoxIm)Ni(CO)2 and Al(C6F5)3 smoothly afforded heterobimetallic Ni/Al species such as trigonal-planar {κ-C-Ni(CO)2}(μ-anti-(S)PoxIm){κ-O-Al(C6F5)3} via a complexation-induced rotation of the N-phosphine oxide moieties, while the addition of 4-dimethylaminopyridine resulted in the quantitative regeneration of the former Ni complexes. The corresponding interconversion also occurred between (SPoxIm)Ni(η2:η2-diphenyldivinylsilane) and {κ-C-Ni(η2:η2-diene)}(μ-anti-SPoxIm){κ-O-Al(C6F5)3} via the coordination and dissociation of Al(C6F5)3. The shape and size of the space around the Ni(0) center was drastically changed through this Lewis-acid-mediated interconversion. Moreover, the multinuclear NMR, IR, and XAS analyses of the aforementioned carbonyl complexes clarified the details of the changes in the electronic states on the Ni centers; i.e., the electron delocalization was effectively enhanced among the Ni atom and CO ligands in the heterobimetallic Ni/Al species. The results presented in this work thus provide a strategy for reversibly modulating both the electronic and spatial environment of organometallic complexes, in addition to the well-accepted Lewis-base-mediated ligand-substitution methods.