Structural definition of HLA class II-presented SARS-CoV-2 epitopes reveals a mechanism to escape pre-existing CD4+ T cell immunity

Cell Rep. 2023 Aug 29;42(8):112827. doi: 10.1016/j.celrep.2023.112827. Epub 2023 Jul 19.

Abstract

CD4+ T cells recognize a broad range of peptide epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which contribute to immune memory and limit COVID-19 disease. We demonstrate that the immunogenicity of SARS-CoV-2 peptides, in the context of the model allotype HLA-DR1, does not correlate with their binding affinity to the HLA heterodimer. Analyzing six epitopes, some with very low binding affinity, we solve X-ray crystallographic structures of each bound to HLA-DR1. Further structural definitions reveal the precise molecular impact of viral variant mutations on epitope presentation. Omicron escaped ancestral SARS-CoV-2 immunity to two epitopes through two distinct mechanisms: (1) mutations to TCR-facing epitope positions and (2) a mechanism whereby a single amino acid substitution caused a register shift within the HLA binding groove, completely altering the peptide-HLA structure. This HLA-II-specific paradigm of immune escape highlights how CD4+ T cell memory is finely poised at the level of peptide-HLA-II presentation.

Keywords: CD4(+) T cells; COVID-19; CP: Immunology; HLA class II; SARS-CoV-2; T cells; antigen presentation; coronavirus; crystallography; immune escape; immune memory.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD4-Positive T-Lymphocytes
  • CD8-Positive T-Lymphocytes
  • COVID-19*
  • Epitopes, T-Lymphocyte
  • HLA-DR1 Antigen
  • Humans
  • Peptides
  • SARS-CoV-2*

Substances

  • HLA-DR1 Antigen
  • Epitopes, T-Lymphocyte
  • Peptides