An Ontology-Based Approach to Improving Medication Appropriateness in Older Patients: Algorithm Development and Validation Study

JMIR Med Inform. 2023 Jul 13:11:e45850. doi: 10.2196/45850.

Abstract

Background: Inappropriate medication in older patients with multimorbidity results in a greater risk of adverse drug events. Clinical decision support systems (CDSSs) are intended to improve medication appropriateness. One approach to improving CDSSs is to use ontologies instead of relational databases. Previously, we developed OntoPharma-an ontology-based CDSS for reducing medication prescribing errors. Objective: The primary aim was to model a domain for improving medication appropriateness in older patients (chronic patient domain). The secondary aim was to implement the version of OntoPharma containing the chronic patient domain in a hospital setting. Methods: A 4-step process was proposed. The first step was defining the domain scope. The chronic patient domain focused on improving medication appropriateness in older patients. A group of experts selected the following three use cases: medication regimen complexity, anticholinergic and sedative drug burden, and the presence of triggers for identifying possible adverse events. The second step was domain model representation. The implementation was conducted by medical informatics specialists and clinical pharmacists using Protégé-OWL (Stanford Center for Biomedical Informatics Research). The third step was OntoPharma-driven alert module adaptation. We reused the existing framework based on SPARQL to query ontologies. The fourth step was implementing the version of OntoPharma containing the chronic patient domain in a hospital setting. Alerts generated from July to September 2022 were analyzed. Results: We proposed 6 new classes and 5 new properties, introducing the necessary changes in the ontologies previously created. An alert is shown if the Medication Regimen Complexity Index is ≥40, if the Drug Burden Index is ≥1, or if there is a trigger based on an abnormal laboratory value. A total of 364 alerts were generated for 107 patients; 154 (42.3%) alerts were accepted. Conclusions: We proposed an ontology-based approach to provide support for improving medication appropriateness in older patients with multimorbidity in a scalable, sustainable, and reusable way. The chronic patient domain was built based on our previous research, reusing the existing framework. OntoPharma has been implemented in clinical practice and generates alerts, considering the following use cases: medication regimen complexity, anticholinergic and sedative drug burden, and the presence of triggers for identifying possible adverse events.

Keywords: adverse event; alert; anticholinergic drug burden; biological ontologies; chronic condition; chronic disease; clinical; decision support; decision support systems; domain; elderly; inappropriate prescribing; medication; medication regimen complexity; ontologies; ontology-based; pharmaceutic; pharmacology; pharmacy; trigger tool.