Four Slip-Stacked Arrangements, Three Types of Photophysics: Crystal Structure and Solid-State Fluorescence of 3,6-Diaryl Substituted Furo[3,4-c]furanone Polymorphs and Regioisomers

Chempluschem. 2023 Aug;88(8):e202300310. doi: 10.1002/cplu.202300310.

Abstract

Six symmetrical 3,6-diaryl (aryl=phenyl, 2-, 3- and 4-tolyl, 2,4- and 3,5-xylyl) substituted furo[3,4-c]furanones (DFF) were synthesized. The computational analysis, based on density functional theory, found eight possible centrosymmetrical slipped π-stack arrangements, formed according to electron repulsion minimization principle, as for previously reported for π-isoelectronic diketopyrrolopyrroles (DPP). One of these slipped stack arrangements was found to form infinite columns in the crystals of a new polymorph of parent phenyl derivative (with centre-to-centre distance CC=6.975 Å), other three types of stacks were found for 3-tolyl (CC=6.153 Å), 4-tolyl (CC=3.849 Å) and 2,4-xylyl (CC=4.856 Å) derivatives by single crystal X-ray diffractometry. All six derivatives show intense solution fluorescence in blue/green region, with a maximum driven entirely by a number and position of methyl substituents on phenyl rings. On the other hand, the solid-state fluorescence from yellow over orange to red is observed only for four derivatives and its presence/absence, spectral position and vibronic structure is driven exclusively by the slips in π-stacks (with interplanar distance always less than 3.5 Å) of almost planar DFF molecules, resulting in J-type emission, H-type excimer-like emission and H-type quenching.

Keywords: density functional theory; diketopyrrolopyrroles; fluorescence; furofuranones; polymorphism; regioisomerism.