Electro-sensing layer constructed of a WO3/CuO nanocomposite, for the electrochemical determination of 2-phenylphenol fungicide

Environ Res. 2023 Nov 1;236(Pt 1):116710. doi: 10.1016/j.envres.2023.116710. Epub 2023 Jul 20.

Abstract

The abstract highlights the development of an electroanalytical sensor for the detection of 2-phenylphenol (2-PPL) as a contaminant. The novelty of the experiment lies in the utilization of a 1-D nanostructured WO3/CuO nanocomposite integrated with a carbon paste electrode (CPE). The hydrothermal method was used to synthesize the WO3 NPs, which were then characterized using Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS) techniques. Tungsten oxides (WO3) have been the subject of extensive study because of their many desirable characteristics, including their ease of preparation, tunable stoichiometry, crystal structure, particle morphology, 2.6 eV bandgap, excellent photocatalytic oxidation capacity, non-toxic nature, and widespread availability. The narrow band gap in CuO makes it an ideal sensing material. Copper oxide has applications in many different industries because it is a semiconductor metal with a narrow band gap in the spectrum of 1.2-1.9 eV and unique optical, electrical, and magnetic properties. Techniques like cyclic voltammetry (CV), and square wave voltammetry (SWV) were used. Real sample analysis was carried out in real-world samples like different types of soil, vegetables, and water. The electroanalytical sensor showed outstanding catalytic behavior by enhancing the peak current of the 2-phenylphenol with the potential shift to the less positive side compared to the unmodified carbon paste electrode in the presence of pH 7.0 phosphate buffer solution (PB). Throughout the experimental study, double distilled was used. Various electro-kinetic parameters like pH, accumulation time study, scan rate, concentration variation, standard heterogeneous rate constant, and participation of electrons, accumulation time, and transfer coefficient have been studied at WO3/CuO/CPE. The limit of detection was quantified together with the limit of quantification. Possible electrochemical oxidation mechanism of the toxic molecule was depicted. Overall, this research contributes to the field of electroanalytical sensing and offers potential applications in environmental monitoring.

Keywords: 2-Phenylphenol; Analytical applications; CuO; Disinfectant; Nanocomposite; One-dimensional structure; Toxic molecule; WO(3).