Despite the positive results of using elicitors to induce resistance against plant diseases, some factors have inhibited the popularization of their use in agriculture. There is an energetic cost related to the elicitors' induced response which can cause undesired effects on growth under low-pressure disease conditions. Elicitors can create phytotoxicity and show high variation in their efficiency between different genotypes within the same crop; in addition, the positive results related to the induced resistance may not repeat in field treatments, adding to the possibility that they are not economically viable. Thus, we carried out two experiments to investigate the technical and economic efficiency of acibenzolar-S-methyl (ASM) and its association with fungicides in the control of leaf diseases of susceptible and resistant wheat varieties, and as how it reflects on the photosynthetic and production performance of wheat. This study showed the limitations of incorporating ASM into foliar fungal disease control in economic terms. However, it was evident that ASM effectively induced plant resistance against Leaf Rust and Powdery Mildew in the field and can be considered a sustainable option for wheat cultivation. Even though its association with chemical control was not the best economic strategy the use of ASM is a tool that can be incorporated into wheat cultivation to minimize the emergence of fungicide-resistant pathogens due to the diversification of modes of action employed and reduce the toxic residue deposition to the environment and human health.
Keywords: Economic evaluation; Elicitors; Fungal diseases; Plant immunity; Sustainable agriculture; Triticum aestivum.
© 2023 The Authors.