The robust and stable expression of CD38 in T-cell acute lymphoblastic leukemia (T-ALL) blasts makes CD38 chimeric antigen receptor (CAR)-T/natural killer (NK) a potential therapy for T-ALL. However, CD38 expression in normal T/NK cells causes fratricide of CD38 CAR-T/NK cells. Here a "2-in-1" gene editing strategy is developed to generate fratricide-resistant locus-specific CAR-T/NK cells. CD38-specific CAR is integrated into the disrupted CD38 locus by CRISPR/Cas9, and CAR is placed under the control of either endogenous CD38 promoter (CD38KO/KI ) or exogenous EF1α promoter (CD38KO/KI EF1α). CD38 knockout reduces fratricide and allows the expansion of CAR-T cells. Meanwhile, CD38KO/KI EF1α results in higher CAR expression than CD38KO/KI in both CAR-T and CAR-NK cells. In a mouse T-ALL model, CD38KO/KI EF1α CAR-T cells eradicate tumors better than CD38KO/KI CAR-T cells. Surprisingly, CD38KO/KI CAR-NK cells show superior tumor control than CD38KO/KI EF1α CAR-NK cells. Further investigation reveals that endogenous regulatory elements in NK cells lead to higher expression of CD38 CAR than in T cells, and the expression levels of CAR affect the therapeutic outcome of CAR-T and CAR-NK cells differently. Therefore, these results support the efficacy of CD38 CAR-T/NK against T-ALL and demonstrate that the "2-in-1" strategy can resolve fratricide and enhance tumor eradication, paving the way for clinical translation.
Keywords: CAR; CD38; CRISPR/Cas9; T-cell acute lymphoblastic leukemia; adoptive cell therapy; gene editing; natural killer cells.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.