Palmitoylation plays an important role in modulating protein trafficking, stability, and activity. The major predicament in protein palmitoylation study is the lack of specific and sensitive tools to visualize protein-specific palmitoylation. Although FRET approach was explored by metabolically labeled palmitic acid and antibody recognized target protein. The trans-membrane strategy suffers from low FRET efficiency due to the donor and acceptor located at different sides of membrane. Herein, we proposed a cis-membrane multi-fluorescence resonance energy transfer (multi-FRET) for amplified visualization of specific palmitoylated proteins through metabolic labeling and targeted recognition. The azido-palmitic acid (azido-PA) was metabolically incorporated into cellular palmitoylated proteins, followed by reacting with dibenzylcylooctyne-modified Cy5 (DBCO-Cy5) through copper-free click chemistry. The protein probe was attached to targeted protein by specific peptide recognition, which initiates a hybridization chain reaction (HCR) amplification process. The cis-membrane labeling method enables effective intramolecular donor-acceptor distance and allow to increase FRET efficiency. Simultaneously, HCR amplification triggered multi-FRET phenomenon with significantly improved FRET efficiency. With the superiority, this strategy has achieved the enhanced FRET imaging of palmitoylated PD-L1 and visualizing the palmitoylation changes of on PD-L1 under drug treatment. Furthermore, the established method successfully amplified visualization of PD-L1 palmitoylation in vivo and mice tumor slice. We envision the approach would provide a useful platform to investigate the effects of palmitoylation on the protein structure and function.
Keywords: FRET; HCR; Imaging; PD-L1 palmitoylation.
Copyright © 2023 Elsevier B.V. All rights reserved.