Female genital mutilation/cutting (FGM/C) describes several procedures that involve injury to the vulva or vagina for nontherapeutic reasons. Though at least 200 million women and girls living in 30 countries have undergone FGM/C, there is a paucity of studies focused on public perception of FGM/C. We used machine learning methods to characterize discussion of FGM/C on Twitter in English from 2015 to 2020. Twitter has emerged in recent years as a source for seeking and sharing health information and misinformation. We extracted text metadata from user profiles to characterize the individuals and locations involved in conversations about FGM/C. We extracted major discussion themes from posts using correlated topic modeling. Finally, we extracted features from posts and applied random forest models to predict user engagement. The volume of tweets addressing FGM/C remained fairly stable across years. Conversation was mostly concentrated among the United States and United Kingdom through 2017, but shifted to Nigeria and Kenya in 2020. Some of the discussion topics associated with FGM/C across years included Islam, International Day of Zero Tolerance, current news stories, education, activism, male circumcision, human rights, and feminism. Tweet length and follower count were consistently strong predictors of engagement. Our findings suggest that (1) discussion about FGM/C has not evolved significantly over time, (2) the majority of the conversation about FGM/C on English-speaking Twitter is advocating for an end to the practice, (3) supporters of Donald Trump make up a substantial voice in the conversation about FGM/C, and (4) understanding the nuances in how people across cultures refer to and discuss FGM/C could be important for the design of public health communication and intervention.
Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.