Yellowish-white light-emitting Gd2-x Si2 O7 :xDy3+ (x = 1-5 mol%) nanophosphors were prepared using a solution combustion synthesis method. Fluorescence spectrophotometry and X-ray diffraction measurements were performed to scrutinize the optical performances and phase recognition of the designated nanophosphors. The outcomes specified that the prepared phosphors were crystallized into a triclinic phase with a P-1 space group. As the concentration of Dy3+ ions was increased, the unit-cell volume decrease proportionally due to the replacement of large-sized Gd3+ by small-sized Dy3+ ions. Under ultraviolet excitation at 349 nm, emission spectra consisted of two pronounced emission lines at ~482 nm (blue line), ~578 nm (yellow line), and a relatively weaker emission at ~670 nm (red line) due to 4 F9/2 →6 H15/2 , 4 F9/2 →6 H13/2 , and 4 F9/2 →6 H11/2 intraconfigurational transitions of Dy3+ ions, respectively. The evidence about the site symmetry around Dy3+ ions was examined by considering the ratio of yellow-to-blue emission intensity. The observed critical distance (Rc ) value was ~20.56 Å (≫5 Å), which signified that energy transfer primarily occurred due to multipolar interaction. The obtained coordinates were close to the white region of the Commission Internationale de l'Éclairage chromaticity diagram, which marked a significant milestone in the development of white light-emitting diodes.
Keywords: Gd2Si2O7; WLEDs; critical distance; triclinic; yellow-to-blue (Y/B).
© 2023 John Wiley & Sons Ltd.