Organofunctionalized tetranuclear clusters [(MII Cl)2 (VIV O)2 {((HOCH2 CH2 )(H)N(CH2 CH2 O))(HN(CH2 CH2 O)2 )}2 ] (1, M=Co, 2: M=Zn) containing an unprecedented oxometallacyclic {M2 V2 Cl2 N4 O8 } (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo-alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single-crystal X-ray diffraction structure analysis. The isostructural clusters are formed of edge-sharing octahedral {VO5 N} and trigonal bipyramidal {MO3 NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of 1 and 2 in an unusual two-mode fashion, unobserved previously. In the crystalline state, the clusters of 1 and 2 are joined by hydrogen bonds to form a three-dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso (VIV -VIV )=-5.4(1); -3.9(2) cm-1 ], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso (VIV -CoII )=-12.6 and -7.5 cm-1 ] contained in 1.
Keywords: cobalt; polyoxovanadate; superexchange; tetranuclear complexes; zinc.
© 2023 Wiley-VCH GmbH.