Bio-waste mediated synthesis of zirconium nanoparticle fuel: Energy management strategy for performance evaluation in a diesel engine

Environ Res. 2023 Nov 1;236(Pt 1):116655. doi: 10.1016/j.envres.2023.116655. Epub 2023 Jul 25.

Abstract

The impact of biosynthesized zirconium nanoparticles originated from biological waste, blended in diesel fuel processed through bio-refining strategy and its combustion, emissions, and overall diesel engine performance towards safety has been examined. Different weight fractions of zirconia nanoparticles were combined with crude diesel at 10, 20, and 30 mg/L values. According to the engine tests, Zirconia (20 nm) added to pure diesel at a concentration of 30 parts per million incremented thermal efficiencies by 4.9% compared to regular diesel fuel. The average reduction in specific fuel consumption for clean diesel fuel when the engine was operating at full power was 2.9%, 3.9%, and 4.9%. Diesel smoke, hydrocarbon, CO, and NOx emissions were reduced by 13%, 20%, 25%, and 29%, respectively, when nano additives were used at a concentration of 30 ppm.Nanoparticles enhance fuel stability, overcome detonation difficulties, and avoid fouling spark plugs. The pressure within cylinder, the temperature, and the rate at which heat is released was improved when alumina nanoparticles were appended to diesel fuel. However, both the length of the combustion and further delay in ignition were cut down. The ideal concentration of zirconia nanoparticles for improving combustion, efficiency, and emissions along with safety attainment in an internal combustion engine is recorded at 30 ppm.

Keywords: Bio-waste; Crank angle; Cylinder pressure; Nanoadditive; Zirconium.