As three-dimensional (3D) printing becomes increasingly common in radiation oncology, proper implementation, usage, and ongoing quality assurance (QA) are essential. While there have been many reports on various clinical investigations and several review articles, there is a lack of literature on the general considerations of implementing 3D printing in radiation oncology departments, including comprehensive process establishment and proper ongoing QA. This review aims to guide radiation oncology departments in effectively using 3D printing technology for routine clinical applications and future developments. We attempt to provide recommendations on 3D printing equipment, software, workflow, and QA, based on existing literature and our experience. Specifically, we focus on three main applications: patient-specific bolus, high-dose-rate (HDR) surface brachytherapy applicators, and phantoms. Additionally, cost considerations are briefly discussed. This review focuses on point-of-care (POC) printing in house, and briefly touches on outsourcing printing via mail-order services.
Keywords: 3D printing; additive manufacturing; bolus; quality assurance; radiation oncology; skin brachytherapy.
© 2023 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.