Rapid microbial viability assay using scanning electron microscopy: a proof-of-concept using Phosphotungstic acid staining

Comput Struct Biotechnol J. 2023 Jul 11:21:3627-3638. doi: 10.1016/j.csbj.2023.07.010. eCollection 2023.

Abstract

Multiple stains have been historically utilized in electron microscopy to provide proper contrast and superior image quality enabling the discovery of ultrastructures. However, the use of these stains in microbiological viability assessment has been limited. Phosphotungstic acid (PTA) staining is a common negative stain used in scanning electron microscopy (SEM). Here, we investigate the feasibility of a new SEM-PTA assay, aiming to determine both viable and dead microbes. The optimal sample preparation was established by staining bacteria with different PTA concentrations and incubation times. Once the assay conditions were set, we applied the protocol to various samples, evaluating bacterial viability under different conditions, and comparing SEM-PTA results to culture. The five minutes 10% PTA staining exhibited a strong distinction between viable micro-organisms perceived as hypo-dense, and dead micro-organisms displaying intense internal staining which was confirmed by high Tungsten (W) peak on the EDX spectra. SEM-PTA viability count after freezing, freeze-drying, or oxygen exposure, were concordant with culture. To our knowledge, this study is the first contribution towards PTA staining of live and dead bacteria. The SEM-PTA strategy demonstrated the feasibility of a rapid, cost-effective and efficient viability assay, presenting an open-view of the sample, and providing a potentially valuable tool for applications in microbiome investigations and antimicrobial susceptibility testing.

Keywords: Fluorescent microscopy; Phosphotungstic acid; Plate count; Scanning electron microscopy; Viability.