Human activity directly or indirectly causes climate change, promoting changes in the composition of the atmosphere. This change is beyond the variation of the natural climate. In this manner, climate change could create an environmental pressure which is enough to trigger new fungal diseases. In addition to climate alterations, the onset of the COVID-19 pandemic has also been associated with the emergence of fungal pathogens. Fungi showed that an inability to grow at high temperatures limits the capacity of fungi to infect mammals. However, fungi can develop thermotolerance, gradually adapting to rising temperatures due to climate change, and generating a greater number of disease-causing organisms. In the present study, we reported the detection and identification of Candida palmioleophila isolates recovered from raw sewage samples in Niteroi city, Rio de Janeiro State, Brazil, during a monitoring program for measuring SARS-CoV-2 presence and concentration. Using polyphasic taxonomy to identify the species and evaluating some virulence aspects of this species, such as biofilm formation and extracellular enzyme production, our data highlight this species as a possible emerging pathogen in Brazil, especially in the pandemic context.
Keywords: Brazil; Candida palmioleophila; MALDI-TOF MS; emerging pathogen.