Black phosphorus quantum dots camouflaged with platelet-osteosarcoma hybrid membrane and doxorubicin for combined therapy of osteosarcoma

J Nanobiotechnology. 2023 Jul 28;21(1):243. doi: 10.1186/s12951-023-02016-9.

Abstract

Background: Osteosarcoma (OS) is the most prevalent primary malignant bone tumor. However, single-agent chemotherapy exhibits limited efficacy against OS and often encounters tumor resistance. Therefore, we designed and constructed an integrated treatment strategy of photothermal therapy (PTT) combined with chemotherapy and used a surface-encapsulated platelet-osteosarcoma hybrid membrane (OPM) that enhances circulation time and enables OS-specific targeting.

Results: The OPM functions as a shell structure, encapsulating multiple drug-loaded nanocores (BPQDs-DOX) and controlling the release rate of doxorubicin (DOX). Moreover, near-infrared light irradiation accelerates the release of DOX, thereby extending circulation time and enabling photostimulation-responsive release. The OPM encapsulation system improves the stability of BPQDs, enhances their photothermal conversion efficiency, and augments PTT efficacy. In vitro and ex vivo experiments demonstrate that BPQDs-DOX@OPM effectively delivers drugs to tumor sites with prolonged circulation time and specific targeting, resulting in superior anti-tumor activity compared to single-agent chemotherapy. Furthermore, these experiments confirm the favorable biosafety profile of BPQDs-DOX@OPM.

Conclusions: Compared to single-agent chemotherapy, the combined therapy using BPQDs-DOX@OPM offers prolonged circulation time, targeted drug delivery, enhanced anti-tumor activity, and high biosafety, thereby introducing a novel approach for the clinical treatment of OS.

Keywords: Black phosphorus quantum dots (BPQDs); Doxorubicin (DOX); Hybrid membrane; Osteosarcoma (OS); Photothermal therapy (PTT).

MeSH terms

  • Bone Neoplasms* / drug therapy
  • Cell Line, Tumor
  • Doxorubicin / chemistry
  • Doxorubicin / pharmacology
  • Humans
  • Nanoparticles* / chemistry
  • Osteosarcoma* / drug therapy
  • Phosphorus / chemistry
  • Phototherapy / methods
  • Quantum Dots* / chemistry

Substances

  • Phosphorus
  • Doxorubicin

Grants and funding