Listening Effort in Tinnitus: A Pilot Study Employing a Light EEG Headset and Skin Conductance Assessment during the Listening to a Continuous Speech Stimulus under Different SNR Conditions

Brain Sci. 2023 Jul 17;13(7):1084. doi: 10.3390/brainsci13071084.

Abstract

Background noise elicits listening effort. What else is tinnitus if not an endogenous background noise? From such reasoning, we hypothesized the occurrence of increased listening effort in tinnitus patients during listening tasks. Such a hypothesis was tested by investigating some indices of listening effort through electroencephalographic and skin conductance, particularly parietal and frontal alpha and electrodermal activity (EDA). Furthermore, tinnitus distress questionnaires (THI and TQ12-I) were employed. Parietal alpha values were positively correlated to TQ12-I scores, and both were negatively correlated to EDA; Pre-stimulus frontal alpha correlated with the THI score in our pilot study; finally, results showed a general trend of increased frontal alpha activity in the tinnitus group in comparison to the control group. Parietal alpha during the listening to stimuli, positively correlated to the TQ12-I, appears to reflect a higher listening effort in tinnitus patients and the perception of tinnitus symptoms. The negative correlation between both listening effort (parietal alpha) and tinnitus symptoms perception (TQ12-I scores) with EDA levels could be explained by a less responsive sympathetic nervous system to prepare the body to expend increased energy during the "fight or flight" response, due to pauperization of energy from tinnitus perception.

Keywords: EEG; alpha values; background noise; continuous speech; hyperacusis; skin conductance; tinnitus.

Grants and funding

This research received no external funding.