Antioxidative 2D Bismuth Selenide via Halide Passivation for Enhanced Device Stability

Nanomaterials (Basel). 2023 Jul 12;13(14):2056. doi: 10.3390/nano13142056.

Abstract

The topological insulator 2D Bi2Se3 is promising for electronic devices due to its unique electronic properties; however, it is challenging to prepare antioxidative nanosheets since Bi2Se3 is prone to oxidation. Surface passivation using ligand agents after Bi2Se3 exfoliation works well to protect the surface, but the process is time-consuming and technically challenging; a passivation agent that is stable under a highly biased potential is significant for in situ passivation of the Bi2Se3 surface. In this work, the roles of halide anions (Cl-, Br-, and I-) in respect of the chemical properties of synthetic Bi2Se3 nanosheets during electrochemical intercalated exfoliation were investigated to determine the antioxidation capacity. It was found that Bi2Se3 nanosheets prepared in a solution of tetrabutylammonium chloride (TBA+ and Cl-) have the best oxidation resistance via the surface bonding of Bi with Cl, which promotes obtaining better device stability. This work paves an avenue for adjusting the components of the electrolyte to further promote the stability of 2D Bi2Se3-nanosheet-based electronic devices.

Keywords: antioxidation; bismuth selenide; field-effect transistors; two-dimensional materials.